The Big Bang Theory

Brought to You By :- WWW.PUNIAEDUHUB.COM

The Big Bang Theory:-    

 Big Bang Theory is about the origin of Universe. It suggests that about 13.7 billion years ago, all matter and energy in the universe was concentrated into an area smaller than an atom. At that time nothing like matter, energy, space and time does not exist. Then suddenly with a bang, the Universe began to expand at an incredible rate and matter, energy, space and time came into being. As the Universe expanded, matter began to coalesce into gas clouds and the stars and planets. Some scientists believe that this expansion is finite and will done day cease. After this point in time, the Universe will begin to collapse until a Big Crunch occurs.

Before the Big Bang:-

No one knows what the universe was like at this time. The best current theory, the “inflationary universe” model assumes that all of space is filled with an extremely concentrated, unstable form of energy that will be transformed into particles of matter at the instant of the Big Bang. But no one knows how space and time came into existence in the first place.
After the initial expansion, the universe cooled sufficiently to allow the formation of subatomic particles, including photons, electrons, protons and neutrons.Though simple atomic nuclei formed within the first three minutes after the Big Bang, thousands of years passed before the first electrically neutral atoms formed. The majority of atoms that were produced by the Big Bang are hydrogen, along with helium and traces of lithium.

Earlier  Universe:-

Photons (light) being elementary particles would have been formed soon after the Big Bang. But these photons would have been scattered by the early electrons. As the Universe continued to cool, it would have eventually reached the temperature where electrons combined with nuclei to form neutral atoms (recombination). Before this “recombination” occurred, the Universe would have been opaque because the free electrons would have caused light (photons) to scatter the way sunlight scatters from the water droplets in clouds. But when the free electrons were absorbed to form neutral atoms, the Universe suddenly became transparent. Those same photons – the afterglow of the Big Bang known as Cosmic Background Radiation – can be observed today.

 Universe is expanding:-

It had always been assumed that the matter of the Universe would slow its rate of expansion. Mass creates gravity, gravity creates pull, the pulling must slow the expansion. But supernovae observations showed that the expansion of the Universe, rather than slowing, is accelerating. Something, not like matter and not like ordinary energy, is pushing the galaxies apart. This “stuff” has been dubbed dark energy, but to give it a name is not to understand it. Whether dark energy is a type of dynamical fluid, heretofore unknown to physics, or whether it is a property of the vacuum of empty space, or whether it is some modification to general relativity is not yet known.

Inflationary model:-

Our investigation shows that the early Universe was too homogeneous. How could pieces of the Universe that had never been in contact with each other have come to equilibrium at the very same temperature? This and other cosmological problems could be solved, however, if there had been a very short period immediately after the Big Bang where the Universe experienced an incredible burst of expansion called “inflation.” For this inflation to have taken place, the Universe at the time of the Big Bang must have been filled with an unstable form of energy whose nature is not yet known. Whatever its nature, the inflationary model predicts that this primordial energy would have been unevenly distributed in space due to a kind of quantum noise that arose when the Universe was extremely small. This pattern would have been transferred to the matter of the Universe and would show up in the photons that began streaming away freely at the moment of recombination.

Proofs of Big Bang:-

  1. Expanding galaxies: Hubble in 1929, noted that galaxies outside our own Milky Way were all moving away from us, each at a speed proportional to its distance from us. He quickly realized what this meant that there must have been an instant in time (now known to be about 14 billion years ago) when the entire Universe was contained in a single point in space. The Universe must have been born in this single violent event which came to be known as the “Big Bang.”
  2. Cosmic Background radiation: Those early photons – the afterglow of the Big Bang known as cosmic background radiation – can be observed today.

Main Points:-

  1. Cosmic Background Explorer (COBE) : NASA has launched two missions to study the cosmic background radiation, taking “baby pictures” of the Universe only 400,000 years after it was born. The first of these was the Cosmic Background Explorer (COBE).
  2. Wilkinson Microware Anisotropy Probe (WMAP)The second mission to examine the cosmic background radiation was the Wilkinson Microware Anisotropy Probe (WMAP). With greatly improved resolution compared to COBE, WMAP surveyed the entire sky, measuring temperature differences of the microwave radiation that is nearly uniformly distributed across the Universe. The picture shows a map of the sky, with hot regions in red and cooler regions in blue. By combining this evidence with theoretical models of the Universe, scientists have concluded that the Universe is “flat,” meaning that, on cosmological scales, the geometry of space satisfies the rules of Euclidean geometry (e.g., parallel lines never meet, the ratio of circle circumference to diameter is pi, etc).
  3. Planck: A third mission, Planck, led by the European Space Agency with significant participation from NASA, was launched in 2009.  Planck is making the most accurate maps of the microwave background radiation yet. With instruments sensitive to temperature variations of a few millionths of a degree, and mapping the full sky over 9 wavelength bands, it measures the fluctuations of the temperature of the CMB with an accuracy set by fundamental astrophysical limits.